
Week 7 - Monday

 What did we talk about last time?
 Counting inversions

 Imagine you are in a completely dark room with a deck of
cards containing 10 cards that are face up and the rest face
down

 How can you create two piles of cards (not necessarily the
same height) that both contain the same number of face up
cards?

 If you fail, you'll be eaten by a grue

 Imagine you have a set of points in a 2D plane
 How do you find the pair of points that's closest?
 This is a fundamental problem in the area of computational

geometry
 As usual, you could look at all pairs of points

 What's the problem with this algorithm?
 O(n2)

double smallest = Double.POSITIVE_INFINITY;
Point p1, p2;
for (int i = 0; i < n - 1; ++i)

for (int j = i + 1; j < n; ++j) {
double distance = points[i].distance(points[j]);
if (distance < smallest) {

smallest = distance;
p1 = points[i];
p2 = points[j];

}
}

 To make things simpler, we assume that no two points have
the same x-coordinate or y-coordinate

 Think about a one-dimensional approach:
 Sort the list by x-value
 The two closest points must be next to each other in the list

 Since the name of the chapter is divide and conquer, that's
what we do

 First, sort all of the points by increasing x-values, calling this
list Px

 Then, sort all of the points by increasing y-values, calling this
list Py

 Find the median point in Px and drop a line through it, dividing
the points into those with smaller x (set Q) and larger x (set R)

 Recursively find the closest pair of points on the left side and
the closest pair of points on the right side

LQ R

 We have magically recursively found the closest pair of points
in Q and the closest pair in R
 Between those two pairs, let's say the closest has distance δ

 But what if the closest pair straddles L, with one point in Q
and the other in R?

 We do a linear scan of Py, the list of points sorted by y values,
making a new y-sorted list of points Sy whose x-coordinate is
within δ of L

 We scan through the list Sy
 For each element, we compute the distance between it and

the next 15 elements
 We find the closest distance
 If the closest distance is smaller than δ, that's the true closest

pair
 Otherwise, we use the smaller of the pairs from Q and R

 First step: If there exists q ∈Q and r ∈ R for which d(q, r) < δ, then
each of q and r lies within a distance δ of L.

 Proof:
 Let x* be the x-coordinate of L.
 Let q = (qx, qy) and r = (rx, ry)
 By the definition of L∗, we know that qx ≤ x* ≤ rx

 Thus, x* – qx ≤ rx – qx ≤ d(q,r) < δ
 And, rx – x* ≤ rx – qx ≤ d(q,r) < δ
 Since q and r both have an x-coordinate within δ of x*, they are both

within δ of L. ∎

 Let S be the set of points whose x-coordinate is within δ of
line L.

 There exist q ∈Q and r ∈ R for which d(q, r) < δ if and only if
there exist s, s' ∈ S for which d(s, s') < δ.

 This is really just restating the last proof: The only way that q
and r are the closest pair is if the closest pair wasn't
completely in Q or R. The pair straddles L and must be within
δ of it or can't possibly be the closest pair.

 If s, s' ∈ S have the property that d(s, s') < δ, then s and s' are
within 15 positions of each other in the sorted list Sy.

 Proof:
 Consider the subset Z of the plane consisting of all points within

distance δ of L.
 We partition Z into boxes: squares with horizontal and vertical sides

of length δ/2.
 One row of Z will consist of four boxes whose horizontal sides have

the same y-coordinates.

Q R

δ

δ/2
δ/2

δ

 Suppose two points of S lie in the same box. Since all points in
this box lie on the same side of L, these two points either both
belong to Q or both belong to R.

 But any two points in the same box are within distance δ �
𝟐𝟐/𝟐𝟐 < δ, which contradicts our definition of δ as the

minimum distance between any pair of points in Q or in R.
 Thus each box contains at most one point of S.

 Now suppose that s, s' ∈ S have the property that d(s, s') < δ,
and that they are at least 16 positions apart in Sy.

 Assume without loss of generality that s has the smaller y-
coordinate. Then, since there can be at most one point per
box, there are at least three rows of Z lying between s and s'.

 But any two points in Z separated by at least three rows must
be a distance of at least 3δ/2 apart, which is a contradiction. ∎

 Pre-processing:
 Sort the points by x: O(n log n)
 Sort the points by y: O(n log n)

 Recursion:
 If there are three or fewer points, find the closest pair by comparing all pairs
 Otherwise, divide into sets Q and R: O(n) time
 Make lists Qx, Qy, Rx, and Ry, giving the points in Q and R sorted by x and y,

respectively: O(n) time
 Construct Sy: O(n) time
 For every point in Sy (of which there can only be n), compute the distance to the

next 15 points: O(n)
 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑐𝑐 which is 𝑂𝑂(𝑛𝑛 log 𝑛𝑛)

 Integer multiplication
 Master theorem

 Start Homework 4
 Read section 5.5
 Extra credit opportunities (0.5% each):
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139

	COMP 4500
	Last time
	Questions?
	Logical warmup
	Assignment 4
	Three-Sentence Summary of Closest Pair of Points
	Closest Pair of Points
	Closest pair of points
	All pairs of points algorithm
	Designing the algorithm
	Divide
	Divide points
	… and …
	…conquer!
	But why?
	Second step
	Third step
	Divide points
	Proof continued
	Proof continued
	Running time
	Mid-Semester Evaluations
	Upcoming
	Next time…
	Reminders

