
Week 7 - Monday

 What did we talk about last time?
 Counting inversions

 Imagine you are in a completely dark room with a deck of
cards containing 10 cards that are face up and the rest face
down

 How can you create two piles of cards (not necessarily the
same height) that both contain the same number of face up
cards?

 If you fail, you'll be eaten by a grue

 Imagine you have a set of points in a 2D plane
 How do you find the pair of points that's closest?
 This is a fundamental problem in the area of computational

geometry
 As usual, you could look at all pairs of points

 What's the problem with this algorithm?
 O(n2)

double smallest = Double.POSITIVE_INFINITY;
Point p1, p2;
for (int i = 0; i < n - 1; ++i)

for (int j = i + 1; j < n; ++j) {
double distance = points[i].distance(points[j]);
if (distance < smallest) {

smallest = distance;
p1 = points[i];
p2 = points[j];

}
}

 To make things simpler, we assume that no two points have
the same x-coordinate or y-coordinate

 Think about a one-dimensional approach:
 Sort the list by x-value
 The two closest points must be next to each other in the list

 Since the name of the chapter is divide and conquer, that's
what we do

 First, sort all of the points by increasing x-values, calling this
list Px

 Then, sort all of the points by increasing y-values, calling this
list Py

 Find the median point in Px and drop a line through it, dividing
the points into those with smaller x (set Q) and larger x (set R)

 Recursively find the closest pair of points on the left side and
the closest pair of points on the right side

LQ R

 We have magically recursively found the closest pair of points
in Q and the closest pair in R
 Between those two pairs, let's say the closest has distance δ

 But what if the closest pair straddles L, with one point in Q
and the other in R?

 We do a linear scan of Py, the list of points sorted by y values,
making a new y-sorted list of points Sy whose x-coordinate is
within δ of L

 We scan through the list Sy
 For each element, we compute the distance between it and

the next 15 elements
 We find the closest distance
 If the closest distance is smaller than δ, that's the true closest

pair
 Otherwise, we use the smaller of the pairs from Q and R

 First step: If there exists q ∈Q and r ∈ R for which d(q, r) < δ, then
each of q and r lies within a distance δ of L.

 Proof:
 Let x* be the x-coordinate of L.
 Let q = (qx, qy) and r = (rx, ry)
 By the definition of L∗, we know that qx ≤ x* ≤ rx

 Thus, x* – qx ≤ rx – qx ≤ d(q,r) < δ
 And, rx – x* ≤ rx – qx ≤ d(q,r) < δ
 Since q and r both have an x-coordinate within δ of x*, they are both

within δ of L. ∎

 Let S be the set of points whose x-coordinate is within δ of
line L.

 There exist q ∈Q and r ∈ R for which d(q, r) < δ if and only if
there exist s, s' ∈ S for which d(s, s') < δ.

 This is really just restating the last proof: The only way that q
and r are the closest pair is if the closest pair wasn't
completely in Q or R. The pair straddles L and must be within
δ of it or can't possibly be the closest pair.

 If s, s' ∈ S have the property that d(s, s') < δ, then s and s' are
within 15 positions of each other in the sorted list Sy.

 Proof:
 Consider the subset Z of the plane consisting of all points within

distance δ of L.
 We partition Z into boxes: squares with horizontal and vertical sides

of length δ/2.
 One row of Z will consist of four boxes whose horizontal sides have

the same y-coordinates.

Q R

δ

δ/2
δ/2

δ

 Suppose two points of S lie in the same box. Since all points in
this box lie on the same side of L, these two points either both
belong to Q or both belong to R.

 But any two points in the same box are within distance δ �
𝟐𝟐/𝟐𝟐 < δ, which contradicts our definition of δ as the

minimum distance between any pair of points in Q or in R.
 Thus each box contains at most one point of S.

 Now suppose that s, s' ∈ S have the property that d(s, s') < δ,
and that they are at least 16 positions apart in Sy.

 Assume without loss of generality that s has the smaller y-
coordinate. Then, since there can be at most one point per
box, there are at least three rows of Z lying between s and s'.

 But any two points in Z separated by at least three rows must
be a distance of at least 3δ/2 apart, which is a contradiction. ∎

 Pre-processing:
 Sort the points by x: O(n log n)
 Sort the points by y: O(n log n)

 Recursion:
 If there are three or fewer points, find the closest pair by comparing all pairs
 Otherwise, divide into sets Q and R: O(n) time
 Make lists Qx, Qy, Rx, and Ry, giving the points in Q and R sorted by x and y,

respectively: O(n) time
 Construct Sy: O(n) time
 For every point in Sy (of which there can only be n), compute the distance to the

next 15 points: O(n)
 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑛𝑛 which is 𝑂𝑂(𝑛𝑛 log 𝑛𝑛)

 Integer multiplication
 Master theorem

 Start Homework 4
 Read section 5.5
 Extra credit opportunities (0.5% each):
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139

	COMP 4500
	Last time
	Questions?
	Logical warmup
	Assignment 4
	Three-Sentence Summary of Closest Pair of Points
	Closest Pair of Points
	Closest pair of points
	All pairs of points algorithm
	Designing the algorithm
	Divide
	Divide points
	… and …
	…conquer!
	But why?
	Second step
	Third step
	Divide points
	Proof continued
	Proof continued
	Running time
	Mid-Semester Evaluations
	Upcoming
	Next time…
	Reminders

